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Chaotic ferroresonance is a nonlinear dynamic electrical phenomenon, which frequently occurs in a power system that 
comprises no-load saturable transformers, transmission lines (or cables) and single-phase switching with three-phase 
supply. This paper presents an extension of chaotic nonlinear bifurcation analysis on ferroresonance in a case study of 
manual single phase switching operation in three-phase transmission system. Analysis and classification methods are 
presented which provide chaotic analysis insights into the global behavior of ferroresonance. Analytical methods for 
nonlinear dynamic systems and MATCONT are used to exhibit characteristic curves such as a time-domain waveform, 
phase-plane, and bifurcation points.  
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1. Introduction 
 

Ferroresonance is due to the interaction between a 

nonlinear inductance and a capacitance. The nonlinear 

inductance is typically the saturable magnetizing 

inductance of a transformer, whereas the capacitance can 

be ascribed to distribution cables, transmission lines, 

capacitor banks, voltage grading capacitors in HV circuit 

breakers or by the coupling between double circuit lines 

[1]. Ferroresonance is initiated by improper switching 

operation, routine switching, or load shedding involving a 

high voltage transmission line. It can result in 

unpredictable over voltages and high currents. The 

energization and deenergization by manual single phase 

fuse cutout switching operation or by abnormal situation 

(unbalanced faults) in three-phase transmission systems, 

consisting of a series/parallel combination of an unloaded 

or very light loaded transformer with saturation 

characteristic and capacitor in the form of transmission-

line capacitive coupling, present high potential for the 

occurrence of ferroresonance [2].  

Ferroresonance is a jump resonance, which can 

suddenly jump from one normal steady-state response 

(sinusoidal line frequency) to another ferroresonance 

steady-state response. It is characterized by a high 

overvoltage and random time duration, which can cause 

dielectric and thermal problems to the transmission and 

distribution systems and switchgear. Typical cases of 

ferroresonance are reported in Refs. [3] and [4]. Theory of 

nonlinear dynamics has been found to provide deeper 

insight into the phenomenon. References [5] to [7] are 

among the early investigations in applying theory of 

bifurcation and chaos to ferroresonance. The susceptibility 

of a ferroresonant circuit to a quasi-periodic and frequency 

locked oscillations are presented and, the effect of initial 

conditions is investigated in references [8] and [9]. Ref. 

[10] is a milestone contribution highlighting the effect of 

transformer modeling on the predicted ferroresonance 

oscillations. The present paper addresses the effect of 

nonlinear core on the global behavior of a ferroresonant 

circuit. 

 
 

2. Ferroresonance and chaotic behaviour 
 

Nonlinear dynamical systems can exhibit multiple 

equilibrium points (the point that the system operates 

without change), limit cycle, jump resonance and 

subharmonic generation. Such systems show a high 

sensitivity to initial conditions, which determine which 

steady state mode will result. Steady state responses can be 

either periodic or chaotic (nonperiodic). In ferroresonance 

situation, remnant magnetization of the cores, voltage at 

the time of manual switching, and amount of charge on the 

capacitance are initial conditions which determine the 

steady state response. Even small changes in such initial 
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conditions, it is possible that subsequent initiations of 

ferroresonance may result in very destructive voltage 

waveforms. 

The theories of nonlinear dynamics and chaos can now 

be used to help analyze, model, understand  ferroresonance 

phenomenon. Simplified methods of descriptively 

categorizing periodic and chaotic modes of ferroresonance 

will be presented here. Phase plane diagrams are used to 

distinguish between various periodic modes of 

ferroresonance.  

The connection of ferroresonance to nonlinear 

dynamics and chaos was established in 1988 and published 

in 1992 [11].Nonlinear dynamics was recently applied to 

ferroresonance [12], but that paper did not address the 

connection to chaotic systems. Gleick [13] provides an 

excellent conceptual introduction to nonlinear dynamics 

and chaos. Baker and Gollub [14], Thompson and Stewart 

[15] and Schuster [16] provide a good theoretical 

introduction for chaotic ferroresonance  phenomenon into 

power engineering literature. 

In this study, major analytical tools are used to exhibit 

and analyze nonlinear ferroresonant system are as follows: 

 

a. Bifurcation diagram 

 

The bifurcation diagrams allow a comparison between 

the periodic and chaotic behaviors of the system. As the 

operating condition (for example the magnitude of the 

supply voltage) of a nonlinear system changes, the 

equilibrium point can change along the number of 

equilibrium points. The values of these parameters, which 

start to produce different steady-state conditions, are 

known as critical or bifurcation values. A bifurcation 

diagram is a plot that displays single or multiple solutions 

(bifurcations) as the value of the control parameter is 

increased. 

 

b. Phase plane 

 

A phase plane is a visual display of certain 

characteristics of certain kinds of differential equations; it 

is a 2-dimensional version of the general n-dimensional 

phase space. Phase planes are useful in visualizing the 

behavior of physical systems. The phase plane analysis is a 

graphical method, in which the time behavior of a system 

is represented by the movement of a point representing the 

state variables of the system with time. As time evolves, 

the initial point follows a trajectory. If a trajectory closes 

on itself, then the system produces a periodic solution. In 

the chaotic system, the trajectory will never close to 

become cycles. This tool is useful in determining if the 

dynamics are stable or not. 

 

 

3. System modelling 
 

Equivalent circuit of power transformer in three phase 

transmission system is shown on Fig. 1. More practical 

representations are also described into the literature. As in 

given figure below, the nonlinear inductances represent 

iron core coils of unloaded three phase power transformer 

and the capacitance (CA, CB, CC) represents capacitance of 

long transmission line (or underground cable). In this case, 

the ferroresonance occurs because of the malfunction of 

one pole of circuit breaker.  

 

 
 

Fig. 1. Single phase switching ferroresonance in three  

phase voltage transformer. 

 

 

After single-phase switching-on of the third phase of 

an unloaded transmission transformer two identical series 

circuits arise each consisting of the no-load inductance of 

the transformer and the earth capacitance of the still open 

phases.  

To obtain the equivalent circuit of the system, we 

define nonlinear iron cored inductance on the single phase 

open transformer as a resistor which resembles the 

transformer losses and a parallel connected nonlinear 

inductance. It was shown in Fig. 2. 

 

 
 

Fig. 2. Nonlinear inductance model. 

 

 

Then getting thevenin equivalent circuit of single open 

phase Fig. 3 can be obtained. 

 

http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Phase_space
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Fig. 3. Basic ferroresonance circuit. 

 
 

By Kirchhoff’s  current law; 

 

0 LcR iii                           (1) 

 

Due to the nonlinear characteristics of the transformer, 

current would be defined as 11th-order polynomial 

equation of flux parameter [7xx]. 
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Combining (1) and (2), following equation is obtained. 
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If uR voltage expression in the equation is written in flux, a 

second order differential equation is obtained. 
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Capacitance value C1 of the circuit refers phase-

neutral and phase-phase capacity values in equation. 

 

mg CCC 21           (6) 

 

Three-phase power circuit shown in Fig. 1 comprises 

100MVA and 110/44/4 kV label power transformer. 

Different losses occurring in transformer substations in the 

system that may play an important role in determining 

ferroresonance mode. In case of different line lengths and 

transformer losses, possible ferroresonance events occur in 

the system have been investigated. Calculations have been 

handled not on the actual values of the system parameters 

in the system, but per-unit values. 
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Investigated length of transmission line is 62 km. 

Capacitance values are taken as for Cg = 5.41 nF and Cm 

= 1.18 nF per kilometer. In case of selection of the 

transmission line is 62km, circuit capacitances are 

calculated as Cg = 338,125 nF and Cm = 73.75 nF.  

Capacitance value of C1 in the second order differential 

equation becomes as follows: 

 

nFC 625.485)75.73(2125.3381   

 

R-transformer losses values were taken in four different 

values in the system as R1=1008Ω, R2=4033Ω, R3=6048Ω. 

Source voltage (E) and angular velocity (w) were fixed 1 

pu values. Transformer losses and the capacitance in the 

circuit were translated into per-unit expressions; 

 

up
X

C

upX

C
X

upR

upR

upR

up

up

cup

up

c

c

up

up

up

.00614.0
73.1621

11

.73.162
33.40

09.6563

09.6563
625.485314

11

.00.150
33.40

6048

.00.100
33.40

4033

.00.25
33.40

1008

.

.

.

.

.3

.2

.1


























 

 

After the translation of the circuit parameters into per-

unit values, need for variable transformation on the 

second-order differential equation is required. Parameter a 

and b in nonlinear current equation are taken as 2.8 × 10
-3

 

and 7.2 × 10
-3

  respectively. State variables of system were 

extracted as follows; 
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4. Simulation results and discussion 
 

State equations were modeled into Matlab Simulink 

environment as shown in Fig. 4. 
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Fig. 4. Matlab simulink mathematical model of  

ferroresonance circuit. 

 

 

Simulation results for R=25 pu have showed in Fig. 5-

6-7. Initial conditions are taken as x1=0, x2=0, t=0. 
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Fig. 5. Flux (x1 state variable) change over time for R=25 pu. 
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Fig. 6. Voltage (x2 state variable) change over time for  

R=25 pu. 
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Fig. 7. Voltage–flux (x1-x2) phase portrait for R=25 pu. 

 

 
In these three figures basic ferroresonance situation 

was captured. Ferroresonant behaviour was demonstrated 

by the distortion and high amplitude of transformer voltage 

waveform and flux as shown in Fig. 5 and Fig. 6. 

The phase plane diagram of Fig. 7 shows the 

characteristics of a periodic waveform with a frequency 

equal to the system frequency. 

Simulation results for R=100 pu have showed in Fig. 

8-9-10. Initial conditions are taken as x1=0, x2=0, t=0. 

Subharmonic ferroresonance is demonstrated in Fig. 8 and 

Fig. 9 showing transformer voltage waveform and flux for 

R=100 pu.  

For this type of ferroresonance, the phase plane 

diagram of Fig. 10 shows separate trajectories closing on 

themselves. 
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Fig. 8. Flux (x1 state variable) change over time for  

R=100 pu. 
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Fig. 9. Voltage (x2 state variable) change over time for  

R=100 pu. 
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Fig. 10. Voltage–flux (x1-x2) phase portrait for  

R=100 pu. 

 

 
Simulation results for R=150 pu have showed in Fig. 

11-12-13. Initial conditions are taken as x1=0, x2=0, t=0. 

Chaotic ferroresonance is demonstrated in Fig. 11 and Fig. 

12 showing transformer voltage waveform and flux for 

R=150 pu. 
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Fig. 11. Flux (x1 state variable) change over time for  

R=150 pu. 
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Fig. 12. Voltage (x2 state variable) change over time for  

r=150 pu. 
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Fig. 13. Voltage–flux (x1-x2) phase portrait for r=100 pu. 

 

 

In Fig. 13, all the characteristics of chaos are 

illustrated, including an irregular and apparently random 

time behaviour, as shown in Fig. 13 a phase plane 

trajectory that never closes on itself. 

 

 

5. Sliding mode control 
 

Sliding Mode Control is concerned with forcing 

one/more variable to follow a specific trajectory which is 

known as sliding surface [6-7]. The location of variables 

relative to sliding surface, which governs control law, is 

applied to the system. The starting point with sliding mode 

control is the definition of the sliding surface. For our 

objective, it is necessary to force the source current to be 

same shape in phase with source voltage. Therefore, the 

trajectory of line current is defined to be 
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Fig. 14. Sliding mode control of  chaotic ferroresonance 

simulink model at  r=150 pu. 
 

 

Control parameters are taken as Kc=1 and Kd=0.1 
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Fig. 15. Flux (x1 state variable) change over time after  

control. 
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Fig. 16. Voltage (x2 state variable) change over time  

after control. 

 

 
Controlled system equation is defined as below 

equation 
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where u is the control signal. 

In sliding mode control of chaotic system, the sliding 

surface is firstly selected. An appropriate sliding surface 

may be chosen for needed performance as below (Eq. 3). 
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where   is the tuning parameter. Secondly, the sliding 

reachability condition design is written as, 
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where Kc and Kd are positive constant design parameters. 

Finally, sliding mode controller is obtained by 

equating both sliding surface and reachability condition. 

The control signal is obtained as, 
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where refx1  and refx2 are the reference value of the state 

variable of system. When the reference point of the system 

01 refx  and 02 refx is chosen, the control signal 

become like below. 
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6. Conclusion 
 
In this paper, the chaos control of ferroresonance 

phenomena in power system is investigated based on 

sliding mode control algorithm. The controller designed 

based on sliding mode control scheme is applied to the 

system which occurs ferroresosance phenomena in power 

systems. After the controller is activated at time t=40 s, the 

system converges to zero equilibrium point. The control of 

system is demonstrated in figures based on simulations.  

Numerical results show that the proposed method for 

control of chaos provides to control the chaos of 

ferroresonance in power systems.     
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